Comparative Application of Various Machine Learning Techniques for Lithology Predictions
نویسندگان
چکیده
منابع مشابه
Application of Machine Learning Techniques in Aquaculture
In this paper we present applications of different machine learning algorithms in aquaculture. Machine learning algorithms learn models from historical data. In aquaculture historical data are obtained from farm practices, yields, and environmental data sources. Associations between these different variables can be obtained by applying machine learning algorithms to historical data. In this pap...
متن کاملMachine Learning Classification Techniques: A Comparative Study
Machine learning is the study of computer algorithms that improve automatically with experience. In other words it is the ability of the computer program to acquire or develop new knowledge or skills from examples for optimising the performance of a computer or a mobile device. In this paper we apply machine learning techniques Bayes network, Logistic Regression, Decision Stump, J48, Random For...
متن کاملAccurate contact predictions using covariation techniques and machine learning
Here we present the results of residue-residue contact predictions achieved in CASP11 by the CONSIP2 server, which is based around our MetaPSICOV contact prediction method. On a set of 40 target domains with a median family size of around 40 effective sequences, our server achieved an average top-L/5 long-range contact precision of 27%. MetaPSICOV method bases on a combination of classical cont...
متن کاملMachine-Learning Techniques for Customer Retention: A Comparative Study
Nowadays, customers have become more interested in the quality of service (QoS) that organizations can provide them. Services provided by different vendors are not highly distinguished which increases competition between organizations to maintain and increase their QoS. Customer Relationship Management systems are used to enable organizations to acquire new customers, establish a continuous rel...
متن کاملApplication of Machine Learning Techniques for Railway Health Monitoring
Emerging wireless sensor networking (WSN) and modern machine learning techniques have encouraged interest in the development of vehicle health monitoring (VHM) systems that ensure secure and reliable operation of the rail vehicle. The performance of rail vehicles running on railway tracks is governed by the dynamic behaviours of railway bogies especially in the cases of lateral instability and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Soil and Groundwater Environment
سال: 2016
ISSN: 1598-6438
DOI: 10.7857/jsge.2016.21.3.021